软X射线CCD相机

极紫外、软X射线真空相机 ALEXi 2048 2048 系列

公司介绍:成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。 产品介绍:greateyes基于独特的平台概

  • 产地: 德国
  • 型号: ALEX 2048 2048 (VUV,EUV,X-ray)
  • 品牌: Greateyes

公司介绍:

成立于2008年的greateyes,是以德国柏林洪堡大学的技术为基础,迅速发展成为国际知名的先进探测器生产企业。如今,其科研与工业客户群体已遍布多个国家。

greateyes开发、生产并销售高性能科学相机。其作为精确探测器,被广泛应用于成像与谱学应用领域。同时,greateyes公司也生产用于太阳能产业的电致荧光与光致荧光检测系统。

 

产品介绍:

greateyes基于独特的平台概念,提供带真空接口的相机系列,可用于真空紫外、极紫外以及软/X射线的成像和光谱应用。输入光子可被CCD传感器直接探测。除了能精确检测高能射线,在近红外、可见光和紫外范围内也表现出非常高的灵敏度。

所有greateyes的相机均使用超低噪音的科研级CCD传感器,使其为探测弱信号得以极大的优化。你可以选择不同光谱灵敏范围以及合适的法兰类型来适应各种成像或者光谱应用。全帧率 CCD传感器使用多级半导体制冷。相机还可提供一套非常丰富的功能,例如灵活的像素联用操作、不同的触发和同步模式、可调的软件基线、传感器和散热系统的温度监控。

 

主要特点:

  • 结构紧凑

  • 灵活的联用模式

  • 量子化效率高达98%

  • 可切换增益设置

  • 深度制冷温度低至-80°C

  • 读出速度可达5MHz

  • 18 bit 动态范围

  • 水冷和强制风冷

性能参数:

image.png


其他参数:

image.png


量子效率曲线

1581386728676265.jpg1581386728595035.jpg

The mean energy of a photon to generate

an electron-hole pair in silicon is 3.66 eV.







典型应用:

  • x射线断层扫描

  • 傅里叶变换全息术

  • X光透射

  • 相干衍射成像

  • 叠层衍射显微光谱成像

  • 掠入射小角度x射线散射


典型客户

Institute / company:

Web

ARCNL – Advanced Research Center for Nanolithography

http://www.arcnl.nl

CLPU – Centro de Láseres Pulsados

http://www.clpu.es

DESY – Deutsches Elektronen-Synchrotron

http://www.desy.de

Berlin Laboratory for innovative X-ray technologies (BLiX), Technische Universität Berlin

http://www.blix.tu-berlin.de

Helmholtz-Zentrum Berlin

http://www.helmholtz-berlin.de

Humboldt-Universität zu Berlin

https://www-pbp.physik.hu-berlin.de

IfG-Institute for Scientific

Instruments GmbH

http://www.ifg-adlershof.de

Indian Institute of Technology Bombay

http://www.iitb.ac.in

Institut Ruđer Bošković

http://www.irb.hr

ISAS – Institute for Analytical Sciences

http://www.isas.de

MBI – Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy

http://www.mbi-berlin.de

Max Planck Institute for the Structure and Dynamics of Matter

http://mpsd-cmd.cfel.de/xts

Max Planck Institute of Quantum Optics

http://www.mpq.mpg.de

Optigraph GmbH

http://www.optigraph.eu

Princeton University

http://www.princeton.edu

PTB – Physikalisch-Technische Bundesanstalt

http://www.ptb.de

Universität Hamburg – working at DESY

http://beschleunigerphysik.desy.de



北京众星联恒科技有限公司德国GE-EUV-soft X-ray 内真空相机 ALEX 系列.pdf


参考文献/Selected references: 

P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński and H. Fiedorowicz, 2-D elemental mapping of an extreme ultraviolet-irradiated PET with a compact near edge X-ray fine structure spectromicroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 145, July 2018, Pages 107-114

P. Wachulak, A. Bartnik and H. Fiedorowicz, Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source, Nature Scientific Reports, volume 8, Article number: 8494 (2018)

P. Wachulak, M. Duda, A. Bartnik, A. Sarzyński, Ł. Węgrzyński, M. Nowak, A. Jancarek and H. Fiedorowicz, Compact system for near edge X-ray fine structure (NEXAFS) spectroscopy using a laser-plasma light source, Opt. Express 26, 8260-8274 (2018)

A. Jonas, T. Meurer, B. Kanngießer and I. Mantouvalou, Reflection zone plates as highly resolving broadband optics for soft X-ray laboratory spectrometers, Review of Scientific Instruments 89, 026108 (2018)

T. Pflug, J. Wang, M. Olbrich et al., Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry, Appl. Phys. A (2018) 124: 116

C. Buerhop, S. Wirsching, A. Bemm et al. Evolution of cell cracks in PV modules under field and laboratory conditions. Prog Photovolt Res Appl. 2018;26:261–272

H. Stiel, J. Braenzel, A. Dehlinger, R. Jung, A. Luebcke, M. Regehly, S. Ritter, J. Tuemmler, M. Schnuerer and C. Seim, Soft x-ray nanoscale imaging using highly brilliant laboratory sources and new detector concepts, Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications, 1024309 (17 May 2017)

M. F. Nawaz, M. Nevrkla, A. Jancarek, A. Torrisi, T. Parkman, J. Turnova, L. Stolcova, M. Vrbova, J. Limpouch, L. Pina and P. Wachulak, Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source, JINST, 2016, Vol. 11 PO7002

I. Mantouvalou, K. Witte, W. Martyanov, A. Jonas, D. Grötzsch, C. Streeck, H. Löchel, I. Rudolph, A. Erko, H. Stiel and B. Kanngießer, Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory, Appl. Phys. Lett. 108, 201106 (2016)

S. Fazinić, I. Božičević Mihalić, T. Tadić, D. Cosic, M. Jakšić, D. Mudronja, Wavelength dispersive µPIXE setup for the ion microprobe, Nucl. Instr. Meth. Phys. Res. Sec. B, 2015, Vol. 363, pages 61-65   

A. Hafner, L. Anklamm, A. Firsov, A. Firsov, H. Löchel, A. Sokolov, R. Gubzhokov, and A. Erko, Reflection zone plate wavelength-dispersive spectrometer for ultra-light elements measurements, Opt. Express, 2015, Vol. 23, No. 23:29476-29483

P. W. Wachulak, A. Torrisi, A. Bartnik, D. Adjei, J. Kostecki, L. Wegrzynski, R. Jarocki, M. Szczurek, H. Fiedorowicz, Desktop water window microscope using a double‑stream gas puff target source, Applied Physics B, 2015, 118:573–578

I. Mantouvalou, K. Witte, D. Grötzsch, M. Neitzel, S. Günther, J. Baumann, R. Jung, H. Stiehl, B. Kanngießer, W. Sandner, High average power, highly brilliant laser-produced laser plasma source for soft X-ray spectroscopy, Review of Scientific Instruments, Vol. 86, Issue 3, 2015 

T. Krähling, A. Michels,S. Geisler, S. Florek, J. Franzke, Investigations into Modeling and Further Estimation of Detection Limits of the Liquid Electrode Dielectric Barrier Discharge, Analytical Chemistry, 2014, 86(12), 5822-8


首页
产品
新闻
联系